
SCIENTIFICSCIENTIFIC

Enhanced Programming Interfaces for MPI

Andy Sherman (sherman@sca.com)
Nick Carriero (carriero@sca.com)

Scientific Computing Associates, Inc.
New Haven, Connecticut

(203) 777-7442

March 1997



SCIENTIFICSCIENTIFIC

Compiler Support for Message-Passing Systems

Impact

■ Substantial reductions in time & 
cost to develop new applications

■ Simpler, shorter codes

■ Extended lifetimes for applications

■ Improved application performance

■ Better in-field monitoring

New Ideas

■ Language-level support for 
message-passing systems

■ Smart (dynamic & adaptive) run-
time systems for message-passing

■ Combining virtual shared memory 
with message-passing systems

Schedule

4Q96 4Q97 4Q98 4Q99

PVM Prototype

MPI Prototype

Refined Design

Full Implementation

VSM Service

Improved Run-Time System

Single Message-Passing Source Code
using Coordination Language Interface

Pre-Compiler/Pre-Linker

Smart Run-Time System

MPI-1 MPI-2 PVMMPI/RT



SCIENTIFICSCIENTIFIC

Project Objectives

■ Research on techniques to make parallel and 
distributed programming easier and more effective:
➤ Simplified API for message-passing systems
➤ Reduced code size
➤ Improved error detection and reporting
➤ Enhanced portability
➤ Flexible debugging/monitoring interface
➤ Support for general algorithmic paradigms

■ Prototype software tools

■ Applications



SCIENTIFICSCIENTIFIC

Enhanced MPI Example

/* ... Several MPI_Pack_size calls ... */

buf = malloc((unsigned) bsize);

pos = 0;

MPI_Pack(&nproc, 1, MPI_INT, buf, bsize, &pos, comm );

MPI_Pack(pdata, nproc, MPI_INT, buf, bsize, &pos, comm);

MPI_Pack(&n, 1, MPI_INT, buf, bsize, &pos, comm);

MPI_Pack(cdata, n, MPI_FLOAT, buf, bsize, &pos, comm);

MPI_Send(buf, pos, MPI_PACKED, d1, tag, comm);

MPI_Send(buf, pos, MPI_PACKED, d2, tag, comm);

MPI_Send(buf, pos, MPI_PACKED, d3, tag, comm);

_Send @ [comm, destarr:nproc, tag] (pdata:nproc, cdata:n);

Using the CLI, this simplifies to:

Here is an MPI code fragment:



SCIENTIFICSCIENTIFIC

Coordination Language Interface

<op>@[<communication context>](<structured data>)

where

<op>: _Send | _Recv

<communication context>: <communicator>, <rank>, <tag info>

<communicator>: COMID

<rank>: RANK | RANKV:EXPR

<structured data>: <datum> [, <structured data>]

<datum>: EXPR[: EXPR[:EXPR]]



SCIENTIFICSCIENTIFIC

Implementation Overview

■ CLI is language-level and is processed using standard
SCIENTIFIC  pre-compiler and pre-linker technology:
➤ Enables substantial syntactic and semantic error checking 

before run time
➤ Opens the potential for optimization
➤ Can be easily retargetted for different message-passing 

systems (or for special variants like real-time)

■ Variety of possible run-time implementation designs:
➤ Permits performance vs. flexibility tradeoffs
➤ Supports debugging/monitoring interfaces
➤ Enables dynamic adaptation to hardware/communication 

information available at run time



choc.mpi

choc.i

choc.i1

choc.c

choc.o

mpi_cpp

mpi_parser

mpi_le

postcpp_cc

Command Line:  cmpic -c choc.mpi

Enhanced C/MPI Source Code

Shell Script (Calls cpp)

Preprocessed
Source Code

Executable
(Parses Enhanced C/MPI)

Annotated
Source Code

Executable
(Performs Source-to-Source
Translation and Annotation)

Pure C/MPI Source Code
(with incorporated annotations)

Shell Script (Calls cc)

Standard C Object File
(with incorporated annotations)

Warnings and Error Messages
about intermodule communication

(Analysis may also be available
to run-time system)

choc.o

choc.d0 straw.d0

straw.o

vanilla.o

sundae

mpi_rl

mpi_cc_link

Support
Library

Enhanced
C/MPI Program

Shell Script
(Calls cc & ld)

Annotations

Executable
(Performs
Intermodule
Analysis)

Standard C
Object File

Standard C Object Files
(with incorporated annotations)

Run-time
Support
Routines

Command Line: cmpic -o sundae choc.o straw.o vanilla.o

Precompiler processing

Prelinker processing

Creating an Enhanced MPI Executable

SCIENTIFICSCIENTIFIC



SCIENTIFICSCIENTIFIC

Run-Time Implementations

■ Direct Replacement Source-to-Source Translation:
➤ Pre-compile/pre-link processing produces a source file 

containing ordinary calls to the message-passing library.
➤ Linked executable uses specific message-passing routines.
➤ Highly efficient (no overhead at run time).
➤ Easily modifiable (source output is readable).

■ Service Routines:
➤ Pre-compile/pre-link processing replaces each CLI call with 

calls to generic service routines to process the communication 
context and the actual data motion.

➤ Service routines “interpret” their arguments at run time in order 
to invoke proper message-passing routines.

➤ Extremely flexible (service routines can be arbitrarily dynamic).
➤ Ideal for tracing/debugging during development.
➤ Low run-time overhead in most cases.



SCIENTIFICSCIENTIFIC

Adding a Virtual Shared Memory Service

■ A VSM service can be added within the message-passing 
semantics by using a distinguished task identifier:

  _Send [comm, THE_VSM, OBJ_TAG] (<structured data>);

  _Recv [comm, THE_VSM, OBJ_TAG] (<structured data>);

■ The OBJ_TAG is used to identify and retrieve VSM objects.

■ Implementation to be based on the Paradise® VSM system.



SCIENTIFICSCIENTIFIC

Why Add a Virtual Shared Memory?

■ Better fit to certain algorithms:
➤ Many algorithms have data that isn’t naturally “owned” by one 

of the processes.
➤ Example: a shared counter is difficult to implement using 

message-passing alone, but is trivial with a VSM:

/* create a counter */

_Send [comm, THE_VSM, COUNTER_TAG] (0);

/* increment the counter */

_Recv [comm, THE_VSM, COUNTER_TAG] (counter);

_Send [comm, THE_VSM, COUNTER_TAG] (counter+1);

■ Mechanism to handle “out-of-band” data and meta-data



SCIENTIFICSCIENTIFIC

Debugging/Monitoring Interfaces: Meta-Data

■ The VSM can be used to collect information about the 
running program and the overall system, such as:
➤  Communication state record for each process
➤  Out-of-band data for each message
➤  Summary communication activity tables

■ The VSM may be “open”: such meta-data may be 
available to debuggers, monitors, performance 
analyzers, etc.

■ The meta-data may also be used by applications in order 
to dynamically customize their communication activities.



SCIENTIFICSCIENTIFIC

Status and Plans

■ Status
➤ Initial MPI prototype operational
➤ Current effort aimed at extending error handling and analysis

■ Plans (Funded)
➤ Continued development compile and run-time systems for MPI 
➤ Hooks for tracing and debugging
➤ Testing by others on real applications (looking for partners)

■ Plans (Not Yet Funded)
➤ Development of virtual shared memory service
➤ Application work and tuning (in collaboration with partners)
➤ Extensions to other message-passing environments (vendor-

specific systems, real-time MPI, etc.)


